Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)Beamspace processing is an emerging technique to reduce baseband complexity in massive multiuser (MU) multipleinput multiple-output (MIMO) communication systems operating at millimeter-wave (mmWave) and terahertz frequencies. The high directionality of wave propagation at such high frequencies ensures that only a small number of transmission paths exist between user equipments and basestation (BS). In order to resolve the sparse nature of wave propagation, beamspace processing traditionally computes a spatial discrete Fourier transform (DFT) across a uniform linear antenna array at the BS where each DFT output is associated with a specific beam. In this paper, we study optimality conditions of the DFT for sparsity-based beamspace processing with idealistic mmWave channel models and realistic channels. To this end, we propose two algorithms that learn unitary beamspace transforms using an l4-norm-based sparsity measure, and we investigate their optimality theoretically and via simulations.more » « less
-
Recent channel state information (CSI)-based positioning pipelines rely on deep neural networks (DNNs) in order to learn a mapping from estimated CSI to position. Since real-world communication transceivers suffer from hardware impairments, CSI-based positioning systems typically rely on features that are designed by hand. In this paper, we propose a CSI-based positioning pipeline that directly takes raw CSI measurements and learns features using a structured DNN in order to generate probability maps describing the likelihood of the transmitter being at pre-defined grid points. To further improve the positioning accuracy of moving user equipments, we propose to fuse a time-series of learned CSI features or a time-series of probability maps. To demonstrate the efficacy of our methods, we perform experiments with real-world indoor line-of-sight (LoS) and nonLoS channel measurements. We show that CSI feature learning and time-series fusion can reduce the mean distance error by up to 2.5× compared to the state-of-the-art.more » « less
-
null (Ed.)Massive multi-user multiple-input multiple-output (MU-MIMO) wireless systems operating at millimeter-wave (mmWave) frequencies enable simultaneous wideband data transmission to a large number of users. In order to reduce the complexity of MU precoding in all-digital basestation architectures that equip each antenna element with a pair of data converters, we propose a two-stage precoding architecture which first generates a sparse precoding matrix in the beamspace domain, followed by an inverse fast Fourier transform that converts the result to the antenna domain. The sparse precoding matrix requires a small amount of multipliers and enables regular hardware architectures, which allows the design of hardware-efficient all-digital precoders. Simulation results demonstrate that our methods approach the error-rate performance of conventional Wiener filter precoding with more than 2x lower complexity.more » « less
An official website of the United States government
